Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 185: 108554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479059

RESUMO

Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were blaOXA-48 and blaNDM-1, which frequently occurred together, while blaKPC-2 together with blaNDM-1 was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.


Assuntos
Carbapenêmicos , Colistina , Humanos , Colistina/farmacologia , Carbapenêmicos/farmacologia , Águas Residuárias , Klebsiella/genética , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Croácia , Antibacterianos/farmacologia , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana
2.
Microb Drug Resist ; 30(3): 118-126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330414

RESUMO

Nontyphoid salmonella can cause severe infections in newborns and is therefore declared a pathogen of major health significance at this age. The aim of the study was molecular and antimicrobial characterization of ß-lactamase-producing Salmonella Mikawasima outbreak clone on a Neonatal ward, University Hospital of Split (UHS), Croatia during the COVID-19 pandemic. From April 2020, until April 2023, 75 nonrepetitive strains of Salmonella Mikawasima were isolated from stool specimens and tested for antimicrobial resistance. All 75 isolates were resistant to ampicillin and gentamicin, while 98% of isolates were resistant to amoxicillin/clavulanic acid. A high level of resistance was observed to third-generation cephalosporins (36% to ceftriaxone and 47% to ceftazidime). Extended-spectrum ß-lactamase production was phenotypically detected by double-disk synergy test in 40% of isolates. Moderate resistance to quinolones was detected; 7% of isolates were resistant to pefloxacin and ciprofloxacin. All isolates were susceptible to carbapenems, chloramphenicol, and co-trimoxazole. Fourteen representative isolates, from 2020, 2021, 2022, and 2023, were analyzed with PFGE and all of them belong to the same clone. Whole-genome sequencing (WGS) analysis of three outbreak-related strains (SM1 and SM2 from 2020 and SM3 from 2023) confirmed that these strains share the same serotype (Mikawasima), multilocus sequence typing profile (ST2030), resistance genes [blaTEM-1B, aac(6')-Iaa, aac(6')-Im, and aph(2'')-Ib)] and carry incompatibility group C (IncC) plasmid. Furthermore, the gene blaSHV-2 was detected in SM1 and SM2. In summary, WGS analysis of three representative strains clearly demonstrates the persistence of ß-lactamase-producing Salmonella Mikawasima in UHS during the 4-year period.


Assuntos
COVID-19 , Salmonella enterica , Recém-Nascido , Humanos , Antibacterianos/farmacologia , Sorogrupo , Pandemias , Salmonella enterica/genética , Testes de Sensibilidade Microbiana , COVID-19/epidemiologia , Salmonella , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Hospitais
3.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203824

RESUMO

The role of marine environments in the global spread of antibiotic resistance still remains poorly understood, leaving gaps in the One Health-based research framework. Antibiotic resistance genes (ARGs) encoding resistance to five major antibiotic classes, including sulfonamides (sul1, sul2), tetracyclines (tetA, tetB), ß-lactams (blaCTX-M, blaTEMblaVIM), macrolides (ermB, mphA), aminoglycosides (aac3-2), and integrase gene (intl1) were quantified by RT-qPCR, and their distribution was investigated in relation to environmental parameters and the total bacterial community in bottom layer and surface waters of the central Adriatic (Mediterranean), over a 68 km line from the wastewater-impacted estuary to coastal and pristine open sea. Seasonal changes (higher in winter) were observed for antibiotic resistance frequency and the relative abundances of ARGs, which were generally higher in eutrophic coastal areas. In particular, intl1, followed by blaTEM and blaVIM, were strongly associated with anthropogenic influence and Gammaproteobacteria as their predominant carriers. Water column stratification and geographic location had a significant influence on ARGs distribution in the oligotrophic zone, where the bacterial community exhibited a seasonal shift from Gammaproteobacteria in winter to Marine group II in summer.


Assuntos
Antibacterianos , Gammaproteobacteria , Antibacterianos/farmacologia , Sulfanilamida , Aminoglicosídeos , Archaea , Resistência Microbiana a Medicamentos/genética
4.
Environ Res ; 243: 117792, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048868

RESUMO

Extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales are a major public health problem, and wastewater from municipal wastewater treatment plants (WWTPs) is a potential means of spreading them into the environment and community. Our objective was to isolate ESBL-producing E. coli and other Enterobacterales from wastewater after treatment at Croatia's largest WWTP and to characterize these isolates by phenotypic and genotypic testing. Of the 200 bacterial isolates, 140 were confirmed as Enterobacterales by MALDI-TOF MS, with Escherichia coli and Klebsiella spp. predominating (69% and 7%, respectively). All 140 enterobacterial isolates were multidrug-resistant (MDR) and produced ESBLs. The most prevalent ESBL genes among the isolates tested were blaCTX-M-15 (60%), blaTEM-116 (44%), and blaCTX-M-3 (13%). Most isolates (94%) carried more than one ESBL gene in addition to blaCTX-M. Genes encoding plasmid-mediated AmpC, most notably blaEBC, were detected in 22% of isolates, whereas genes encoding carbapenemases (blaOXA-48, blaNDM-1, blaVIM-1) were less represented (10%). In E. coli, 9 different sequence types (ST) were found, with the emerging high-risk clones ST361 (serotype A-O9:H30) and pandemic ST131 (serotype B2-O25:H4) predominating (32% and 15%, respectively). Other high-risk E. coli clones included ST405 (3%), ST410 (3%), CC10 (3%), ST10 (3%), and ST38 (2%), and emerging clones included ST1193 (2%) and ST635 (2%). Whole-genome sequencing of three representative E. coli from two dominant clone groups (ST361 and ST131) and one extensively drug-resistant K. oxytoca revealed the presence of multiple plasmids and resistance genes to several other antibiotic classes, as well as association of the blaCTX-M-15 gene with transposons and insertion sequences. Our findings indicate that treated municipal wastewater contributes to the spread of emerging and pandemic MDR E. coli clones and other enterobacterial strains of clinical importance into the aquatic environment, with the risk of reintroduction into humans.


Assuntos
Escherichia coli , Águas Residuárias , Humanos , Escherichia coli/genética , beta-Lactamases/genética , Antibacterianos , Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana
5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834008

RESUMO

Point mutations in the 23S rRNA, gyrA, and gyrB genes can confer resistance to clarithromycin (CAM) and levofloxacin (LVX) by altering target sites or protein structure, thereby reducing the efficacy of standard antibiotics in the treatment of Helicobacter pylori infections. Considering the confirmed primary CAM and LVX resistance in H. pylori infected patients from southern Croatia, we performed a molecular genetic analysis of three target genes (23S rRNA, gyrA, and gyrB) by PCR and sequencing, together with computational molecular docking analysis. In the CAM-resistant isolates, the mutation sites in the 23S rRNA gene were A2142C, A2142G, and A2143G. In addition, the mutations D91G and D91N in GyrA and N481E and R484K in GyrB were associated with resistance to LVX. Molecular docking analyses revealed that mutant H. pylori strains with resistance-related mutations exhibited a lower susceptibility to CAM and LVX compared with wild-type strains due to significant differences in non-covalent interactions (e.g., hydrogen bonds, ionic interactions) leading to destabilized antibiotic-protein binding, ultimately resulting in antibiotic resistance. Dual resistance to CAM and LVX was found, indicating the successful evolution of H. pylori resistance to unrelated antimicrobials and thus an increased risk to human health.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacologia , Levofloxacino/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/genética , RNA Ribossômico 23S/genética , Simulação de Acoplamento Molecular , Croácia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biópsia
6.
Water Res ; 246: 120688, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806125

RESUMO

Marine and ocean environments are the most widespread habitats in the world but are still the least studied from the aspect of antibiotic resistance. The indigenous and tetracycline (TET)- and sulfamethoxazole (SXT)-resistant planktonic bacterial communities were simultaneously investigated for the first time along a trophic gradient of a temperate zone, regarding their taxonomic and functional structures as well as biotic and abiotic factors affecting their dynamics as vehicles of antibiotic resistance genes (ARGs), thus impacting the ARGs distribution at seasonal and spatial scales. A total of 80 microbiomes, recovered seasonally from bottom layer and surface waters along a 68-km transect from wastewater-impacted estuary to coastal and pristine open sea in the central Adriatic (Mediterranean Sea), were analysed using 16S rRNA amplicon sequencing, PICRUSt2 bioinformatics and extensive biostatistics. Eighty-one bacterial phyla were identified, with majority (n = 49) in summer when communities were found to be more species enriched across the gradient. Microbial diversity was more site-specific and pronounced in surface microbiomes in winter. Nevertheless, both richness and community diversity decreased with distance from the coast. Although the microbiomes from human-influenced sites significantly differed from those in oligotrophic offshore area, Proteobacteria were still the most abundant phylum during both seasons at the surface and seabed along the gradient, and the major contributors to the marine resistome regarding native and TET- and SXT-resistant microbial communities. Resistome structure was more diverse in winter, whereas peptide, vancomycin and multidrug resistance modules predominated regardless of season, trophic status, or antibiotic. However, multidrug, beta-lactam resistance modules as well as macrolide, phenicol, aminoglycoside, and particularly imipenem resistance genes were much more frequent in winter, suggesting that the diversity of indigenous resistomes is highly dependent on seasonal variations of the water column, driven by thermohaline stratification and nutrients. Moreover, several pathogenic genera stood out as important carriers of multiple resistance traits in TET- and SXT-related resistomes in both seasons, particularly Acinetobacter, Vibrio, Bacillus and Pseudomonas, beside which Proteus, Serratia and Bacteroides prevailed in native resistomes. This study evidenced seasonal and spatial variations of the marine microbiome and resistome and their driving forces along the trophic gradient, providing a comprehensive insight into the diversity and distribution of antibiotic resistance in the marine ecosystem of a temperate zone.


Assuntos
Bactérias , Microbiota , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Antibacterianos , Tetraciclina , Genes Bacterianos
7.
Sci Total Environ ; 870: 161805, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36708818

RESUMO

The emergence of extended-spectrum ß-lactamase (ESBL)- and especially carbapenemases in Enterobacterales has led to limited therapeutic options. Therefore, it is critical to fully understand all potential routes of transmission, especially in high-risk sources such as hospital wastewater. This study aimed to quantify four enteric opportunistic pathogens (EOPs), total, ESBL- and carbapenem-resistant coliforms and their corresponding resistance genes (two ESBL and five carbapenemase genes) and to characterize enterobacterial isolates from hospital wastewater from two large hospitals in Zagreb over two seasons. Culturing revealed similar average levels of total and carbapenem-resistant coliforms (3.4 × 104 CFU/mL), and 10-fold lower levels of presumptive ESBL coliforms (3 × 103 CFU/mL). Real-time PCR revealed the highest E. coli levels among EOPs (105 cell equivalents/mL) and the highest levels of the blaKPC gene (up to 10-1 gene copies/16S copies) among all resistance genes examined. Of the 69 ESBL- and 90 carbapenemase-producing Enterobacterales (CPE) isolates from hospital wastewater, all were multidrug-resistant and most were identified as Escherichia coli, Citrobacter, Enterobacter, and Klebsiella. Among ESBL isolates, blaCTX-M-15 was the most prevalent ESBL gene, whereas in CPE isolates, blaKPC-2 and blaNDM-1 were the most frequently detected CP genes, followed by blaOXA-48. Molecular epidemiology using PFGE, MLST and whole-genome sequencing (WGS) revealed that clinically relevant variants such as E. coli ST131 (blaCTX-M-15/blaTEM-116) and ST541 (blaKPC-2), K. pneumoniae ST101 (blaOXA-48/blaNDM-1), and Enterobacter cloacae complex ST277 (blaKPC-2/blaNDM-1) were among the most frequently detected clone types. WGS also revealed a diverse range of resistance genes and plasmids in these and other isolates, as well as transposons and insertion sequences in the flanking regions of the blaCTX-M, blaOXA-48, and blaKPC-2 genes, suggesting the potential for mobilization. We conclude that hospital wastewater is a potential secondary reservoir of clinically important pathogens and resistance genes and therefore requires effective pretreatment before discharge to the municipal sewer system.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Águas Residuárias , Tipagem de Sequências Multilocus , Croácia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Klebsiella pneumoniae , Hospitais , Klebsiella/genética , Klebsiella/metabolismo , Enterobacter/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
8.
Sci Total Environ ; 858(Pt 1): 159720, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306843

RESUMO

Vancomycin-resistant Enterococcus faecium (VREfm) is an opportunistic pathogen among the highest global priorities regarding public and environmental health. Following One Health approach, we determined for the first time the antibiotic resistance and virulence genes, and sequence types (STs) affiliation of VREfm recovered simultaneously from marine beach waters, submarine outfall of a wastewater treatment plant and an offshore discharge of untreated sewage, and compared them with the surveillance VREfm from regional university hospital in Croatia to assess the hazard of their transmission and routes of introduction into the natural environment. Importantly, VREfm recovered from wastewater, coastal bathing waters and hospital shared similar virulence, multidrug resistance, and ST profiles, posing a major public health threat. All isolates carried the vanA gene, while one clinical isolate also possessed the vanC2/C3 gene. The hospital strains largely carried the aminoglycoside-resistance genes aac(6')-Ie-aph(2″)-Ia, and aph(2″)-Ib and aph(2″)-Id, which were also predominant in the environmental isolates. The hyl gene was the most prevalent virulence gene. The isolates belonged to 10 STs of the clonal complex CC17, a major epidemic lineage associated with hospital infections and outbreaks, with ST117 and ST889 common to waterborne and hospital isolates, pointing to their sewage-driven dissemination. To gain better insight into the diversity of accompanying taxons in the surveyed water matrices, microbiome taxonomic profiling was carried out using Illumina-based 16S rDNA sequencing and their resistome features predicted using the PICRUSt2 bioinformatics tool. An additional 60 pathogenic bacterial genera were identified, among which Arcobacter, Acinetobacter, Escherichia-Shigella, Bacteroides and Pseudomonas were the most abundant and associated with a plethora of antibiotic resistance genes and modules, providing further evidence of the hazardous effects of wastewater discharges, including the treated ones, on the natural aquatic environment that should be adequately addressed from a sanitary and technological perspective.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Microbiota , Enterococos Resistentes à Vancomicina , Humanos , Enterococcus faecium/genética , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Resistência a Vancomicina/genética , Águas Residuárias/microbiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Água , Esgotos , Enterococos Resistentes à Vancomicina/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
9.
Colloids Surf B Biointerfaces ; 217: 112619, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35700566

RESUMO

Marine biofilms occur frequently and spontaneously in seawater, on almost any submerged solid surface. At the early stages of colonization, it consists of bacteria and evolves into a more complex community. Using 16S rRNA amplicon sequencing and comparative metagenomics, the composition and predicted functional potential of one- to three-day old bacterial communities in surface biofilms were investigated and compared to that of seawater. This confirmed the autochthonous marine bacterium Vibrio gigantis as an early and very abundant biofilm colonizer, also functionally linked to the genes associated with cell motility, surface attachment, and communication via signaling molecules (quorum sensing), all crucial for biofilm formation. The dynamics of adhesion on a solid surface of V. gigantis alone was also monitored in controlled laboratory conditions, using a newly designed and easily implementable protocol. Resulting in a calculated percentage of bacteria-covered surface, a convincing tendency of spontaneous adhering was confirmed. From the multiple results, its quantified and reproducible adhesion dynamics will be used as a basis for future experiments involving surface modifications and coatings, with the goal of preventing adhesion.


Assuntos
Metagenômica , Vibrio , Biofilmes , RNA Ribossômico 16S/genética , Vibrio/genética
10.
Front Microbiol ; 13: 858821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602062

RESUMO

The rapid and ongoing spread of carbapenemase-producing Enterobacteriaceae has led to a global health threat. However, a limited number of studies have addressed this problem in the marine environment. We investigated their emergence in the coastal waters of the central Adriatic Sea (Croatia), which are recipients of submarine effluents from two wastewater treatment plants. Fifteen KPC-producing Enterobacteriaceae (nine Escherichia coli, four Klebsiella pneumoniae and two Citrobacter freundii) were recovered, and susceptibility testing to 14 antimicrobials from 10 classes showed that four isolates were extensively drug resistant (XDR) and two were resistant to colistin. After ERIC and BOX-PCR typing, eight isolates were selected for whole genome sequencing. The E. coli isolates belonged to serotype O21:H27 and sequence type (ST) 2795, while K. pneumoniae isolates were assigned to STs 37 and 534. Large-scale genome analysis revealed an arsenal of 137 genes conferring resistance to 19 antimicrobial drug classes, 35 genes associated with virulence, and 20 plasmid replicons. The isolates simultaneously carried 43-90 genes encoding for antibiotic resistance, while four isolates co-harbored carbapenemase genes bla KPC-2 and bla OXA-48. The bla OXA-48 was associated with IncL-type plasmids in E. coli and K. pneumoniae. Importantly, the bla KPC-2 in four E. coli isolates was located on ~40 kb IncP6 broad-host-range plasmids which recently emerged as bla KPC-2 vesicles, providing first report of these bla KPC-2-bearing resistance plasmids circulating in E. coli in Europe. This study also represents the first evidence of XDR and potentially virulent strains of KPC-producing E. coli in coastal waters and the co-occurrence of bla KPC-2 and bla OXA-48 carbapenemase genes in this species. The leakage of these strains through submarine effluents into coastal waters is of concern, indicating a reservoir of this infectious threat in the marine environment.

11.
Acta Biomater ; 146: 131-144, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35470073

RESUMO

An infecting and propagating parasite relies on its innate defense system to evade the host's immune response and to survive challenges from commensal bacteria. More so for the nematode Anisakis, a marine parasite that during its life cycle encounters both vertebrate and invertebrate hosts and their highly diverse microbiotas. Although much is still unknown about how the nematode mitigates the effects of these microbiota, its antimicrobial peptides likely play an important role in its survival. We identified anisaxins, the first cecropin-like helical antimicrobial peptides originating from a marine parasite, by mining available genomic and transcriptomic data for Anisakis spp. These peptides are potent bactericidal agents in vitro, selectively active against Gram-negative bacteria, including multi-drug resistant strains, at sub-micromolar concentrations. Their interaction with bacterial membranes was confirmed by solid state NMR (ssNMR) and is highly dependent on the peptide concentration as well as peptide to lipid ratio, as evidenced by molecular dynamics (MD) simulations. MD results indicated that an initial step in the membranolytic mode of action involves membrane bulging and lipid extraction; a novel mechanism which may underline the peptides' potency. Subsequent steps include membrane permeabilization leading to leakage of molecules and eventually cell death, but without visible macroscopic damage, as shown by atomic force microscopy and flow cytometry. This membranolytic antibacterial activity does not translate to cytotoxicity towards human peripheral blood mononuclear cells (HPBMCs), which was minimal at well above bactericidal concentrations, making anisaxins promising candidates for further drug development. STATEMENT OF SIGNIFICANCE: Witnessing the rapid spread of antibiotic resistance resulting in millions of infected and dozens of thousands dying worldwide every year, we identified anisaxins, antimicrobial peptides (AMPs) from marine parasites, Anisakis spp., with potent bactericidal activity and selectivity towards multi-drug resistant Gram-negative bacteria. Anisaxins are membrane-active peptides, whose activity, very sensitive to local peptide concentrations, involves membrane bulging and lipid extraction, leading to membrane permeabilization and bacterial cell death. At the same time, their toxicity towards host cells is negligible, which is often not the case for membrane-active AMPs, therefore making them suitable drug candidates. Membrane bulging and lipid extraction are novel concepts that broaden our understanding of peptide interactions with bacterial functional structures, essential for future design of such biomaterials.


Assuntos
Parasitos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Bactérias , Humanos , Leucócitos Mononucleares , Lipídeos/farmacologia , Testes de Sensibilidade Microbiana
12.
J Hazard Mater ; 427: 128155, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34991006

RESUMO

Extended-spectrum ß-lactamase (ESBL)- and carbapenemase-producing Enterobacterales are a critical global health problem and wastewater treatment plants (WWTPs) can promote their spread into the environment; yet their efficacy is not well characterized. Here, we have used conventional culturing to monitor coliform bacteria and quantitative PCR to monitor 2 ESBL and 5 carbapenemase (CP) genes and 4 enteric opportunistic pathogens (EOPs) in the influent and effluent of 7 Croatian WWTPs in two seasons. In general, levels of total, cefotaxime- and carbapenem-resistant coliforms were significantly reduced but not eliminated by conventional treatment in most WWTPs. Most WWTPs efficiently removed EOPs such as K. pneumoniae and A. baumannii, while E. coli and Enterococcus spp. were reduced but still present in relatively high concentrations in the effluent. ESBL genes (blaTEM and blaCTX-M-32) were only slightly reduced or enriched after treatment. CP genes, blaKPC-3, blaNDM and blaOXA-48-like, were sporadically detected, while blaIMP and blaVIM were frequently enriched during treatment and correlated with plant size, number or size of hospitals in the catchment area, and COD effluent concentration. Our results suggest that improvements in wastewater treatment technologies are needed to minimize the risk of environmental contamination with top priority EOPs and ARGs and the resulting public health.


Assuntos
Águas Residuárias , Purificação da Água , Antibacterianos , Carbapenêmicos/farmacologia , Cefalosporinas , Croácia , Escherichia coli , Testes de Sensibilidade Microbiana , Prevalência , beta-Lactamases/genética
13.
Environ Pollut ; 292(Pt A): 118282, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619178

RESUMO

Wastewater treatment plant (WWTP) effluents are pointed as hotspots for the introduction of both commensal and pathogenic bacteria as well as their antibiotic resistance genes (ARGs) in receiving water bodies. For the first time, the effect of partially treated submarine effluents was explored at the bottom and surface of the water column to provide a comprehensive overview of the structure of the microbiome and associated AR, and to assess environmental factors leading to their alteration. Seawater samples were collected over a 5-month period from submarine outfalls in central Adriatic Sea, Croatia. 16S rRNA amplicon sequencing was used to establish taxonomic and resistome profiles of the bacterial communities. The community differences observed between the two discharge areas, especially in the abundance of Proteobacteria and Firmicutes, could be due to the origin of wastewaters treated in WWTPs and the limiting environmental conditions such as temperature and nutrients. PICRUSt2 analysis inferred the total content of ARGs in the studied microbiomes and showed the highest abundance of resistance genes encoding multidrug efflux pumps, such as MexAB-OprM, AcrEF-TolC and MdtEF-TolC, followed by the modified peptidoglycan precursors, transporter genes encoding tetracycline, macrolide and phenicol resistance, and the bla operon conferring ß-lactam resistance. A number of pathogenic genera introduced by effluents, including Acinetobacter, Arcobacter, Bacteroides, Escherichia-Shigella, Klebsiella, Pseudomonas, and Salmonella, were predicted to account for the majority of efflux pump-driven multidrug resistance, while Acinetobacter, Salmonella, Bacteroides and Pseudomonas were also shown to be the predominant carriers of non-efflux ARGs conferring resistance to most of nine antibiotic classes. Taken together, we evidenced the negative impact of submarine discharges of treated effluents via alteration of physico-chemical characteristics of the water column and enrichment of bacterial community with nonindigenous taxa carrying an arsenal of ARGs, which could contribute to the further propagation of the AR in the natural environment.


Assuntos
Microbiota , Antibacterianos/farmacologia , Croácia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Águas Residuárias/análise
14.
Plants (Basel) ; 10(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34579370

RESUMO

With the increasing interest in obtaining biologically active compounds from natural sources, Dittrichia viscosa (L.) Greuter (Asteraceae) came into our focus as a readily available and aromatic wild shrub widely distributed in the Mediterranean region. This work provides a phytochemical profile of D. viscosa in terms of parallel chemical composition in the lipophilic fraction (essential oil) and the water fraction (hydrosol). GC-MS analysis identified 1,8-cineole, caryophyllene oxide, α-terpenyl acetate, and α-muurolol as the major components of the essential oil, while in the hydrosol p-menth-1-en-9-ol, 1,8-cineole, linalool, cis-sabinene hydrate, and α-muurolol were the major volatile components. 3,4-Dihydroxybenzoic acid was found to be the predominant compound in the hydrosol composition by HPLC analysis. The antimicrobial potential of both extracts was evaluated against thirteen opportunistic pathogens associated with common skin and wound infections and emerging food spoilage microorganisms. The antimicrobial activity of the essential oil suggests that the volatiles of D. viscosa could be used as novel antimicrobial agents. The antiproliferative results of D. viscosa volatiles are also new findings, which showed promising activity against three cancer cell lines: HeLa (cervical cancer cell line), HCT116 (human colon cancer cell line), and U2OS (human osteosarcoma cell line). The decrease in GSH level observed in hydrosol-treated HeLa cells suggests oxidative stress as a possible mechanism of the antiproliferative effect of hydrosol on tumor cells. The presented results are also the first report of significant antiphytoviral activity of hydrosol against tobacco mosaic virus (TMV) infection. Based on the results, D. viscosa might have the potential to be used in crop protection, as a natural disinfectant and natural anticancer agent.

15.
Chemosphere ; 281: 130945, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289613

RESUMO

The global spread of mobilized colistin resistance (mcr) genes in clinical and natural environments dangerously diminishes the effectiveness of this last-resort antibiotic, becoming an urgent health threat. We used a multidisciplinary approach to detect mcr-1 gene and colistin (CL)-resistant bacteria in seawater from two Croatian public beaches. Illumina-based sequencing of metagenomic 16S rRNA was used to assess the taxonomic, functional, and antibiotic resistance genes (ARGs) profiling of the bacterial community tolerant to CL regarding different culture-based isolation methodologies. Data revealed that the choice of methodology alters the diversity and abundance of taxa accounting for the CL-resistance phenotype. The mcr-1 gene was identified by cloning and sequencing in one sample, representing the first report of mcr-1 gene in Croatia. Culturing of CL-resistant strains revealed their resistance phenotypes and concurrent production of clinically significant ß-lactamases, such as CTX-M-15, CTX-M-3 and SHV-12. We also report the first identification of blaCTX-M-15 gene in Klebsiella huaxiensis and K. michiganensis, as well as the blaTEM-1+CTX-M-3 in Serratia fonticola. ARGs profiles derived from metagenomic data and predicted by PICRUSt2, showed the highest abundance of genes encoding for multidrug efflux pumps, followed by the transporter genes accounting for the tetracycline, macrolide and phenicol resistance. Our study evidenced the multidrug resistance features of CL-tolerant bacterial communities thriving in surface beach waters. We also showed that combined application of the metagenomic approaches and culture-based techniques enabled successful detection of mcr-1 gene, which could be underreported in natural environment.


Assuntos
Colistina , Microbiota , Antibacterianos/farmacologia , Colistina/farmacologia , Croácia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Serratia , beta-Lactamases/genética
16.
Bioorg Chem ; 112: 104938, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933803

RESUMO

Quaternary ammonium compounds (QACs) are antimicrobial agents displaying a broad spectrum of activity due to their mechanism of action targeting the bacterial membrane. The emergence of bacterial resistance to QACs, especially in times of pandemics, requires the continuous search for new and potent QACs structures. Here we report the synthesis and biological evaluation of QACs based on imidazole derivative, N-benzylimidazole. The antimicrobial activity was tested against a range of pathogenic bacteria and fungi, both ATCC and clinical isolates, showing varying activities ranging in minimal inhibitory concentrations (MICs) from as low as 7 ng/mL. The most promising compound, N-tetradecyl derivative (BnI-14), proved to be very potent against bacterial biofilms, even at sub-MIC doses, suggesting interference with the bacterial growth and/or division process. The BnI-14 treatment induces bacterial membrane disruption, as observed by fluorescence spectroscopy and atomic force microscopy and it also binds to DNA indicating that bacterial membrane might not be the only cellular target of QACs. Most importantly, BnI-14 exhibits low toxicity to healthy human cell lines, suggesting that N-benzylimidazolium-based QACs may be promising new antimicrobial agents.


Assuntos
Bactérias/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sais/síntese química , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade
17.
Plants (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919423

RESUMO

Onions are one of the most widely grown vegetable crops. As production increases, so does the generation of waste from various parts of the onion, raising the need for efficient ecological disposal and use of such waste products. However, onion waste products are a rich source of antioxidants with a range of biological properties, therefore, they could potentially be used in food and pharmaceutical industries. In the present study, we identified the main flavonols and anthocyanins in peel extracts of Allium × cornutum Clement ex Visiani, 1842, and two varieties of Allium cepa L. and tested their antioxidant, antimicrobial and antiproliferative properties. Quercetin 3,4'-diglucolside, quercetin 4'-monoglucoside and quercetin are the most abundant flavonols in all onion extracts detected by high-performance liquid chromatography (HPLC) method. The composition of anthocyanins varied in all extracts. 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays showed that the triploid onion A. × cornutum had the highest antioxidant power. Evaluation of antimicrobial activity by broth microdilution assay also showed that A. × cornutum had higher antimicrobial activity compared to the red and yellow onion varieties. Comparable antiproliferative activity was confirmed for all onion extracts tested on three cancer cell lines: Hela (cervical cancer cell line), HCT116 (human colon cancer cell line) and U2OS (human osteosarcoma cell line). The most abundant onion flavonols (quercetin 3,4'-diglucoside and quercetin 4'-monoglucoside) showed weaker antimicrobial as well as antiproliferative properties compared to the extracts, leading to the conclusion that other phytochemicals besides flavonols contribute to the biological activity of onion peel extracts. The results demonstrate the antioxidant and antimicrobial properties of onion peels, which have promising potential as cancer cell proliferation inhibitors.

18.
Life (Basel) ; 10(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674268

RESUMO

Aqueous extracts of two Cistus species wild growing in Croatia-Cistus creticus (CC) and Cistus salviifolius (CS)-have been assessed with UPLC-MS/MS, showing 43 different phytochemicals, with flavonol glycosides: myricetin-3-hexoside and myricetin-rhamnoside, predominate ones in CC and myricetin-3-hexoside in CS. Antioxidant potential tested with the FRAP method showed no difference between CS and CC aqueous extracts, while higher phenolic content of CC comparing to CS, determined with a Folin-Cicolateu reagent correlated to its higher antioxidant capacity observed by the DPPH method. Both extracts were assessed for antimicrobial activity, using disc-diffusion and broth microdilution assays, targeting the opportunistic pathogens, associated with food poisoning, urinary, respiratory tract, blood stream and wound infections in humans. Antimicrobial assays revealed that fungi were in general more sensitive to both Cistus aqueous extracts, comparing to the bacteria where two extracts showed very similar activity. The most potent activity was observed against A. baumannii for both extracts. The extracts were tested on human lung cancer (A549) cell line using the MTT assay, showing very similar antiproliferative activity. After 72 h treatment with CC and CS aqueous extracts in concentration of 0.5 g/L, the viability of the cells were 37% and 50% respectively, compared to non-treated cells.

19.
Nanomaterials (Basel) ; 10(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485869

RESUMO

We aim to elucidate the mode of antibacterial action of the laser-synthesized silver colloid against Escherichia coli. Membrane integrity was studied by flow cytometry, while the strain viability of the treated culture was determined by plating. The spectrofluorometry was used to obtain the time development of the reactive oxygen species (ROS) inside the nanoparticle-treated bacterial cells. An integrated atomic force and bright-field/fluorescence microscopy system enabled the study of the cell morphology, Young modulus, viability, and integrity before and during the treatment. Upon lethal treatment, not all bacterial cells were shown to be permeabilized and have mostly kept their morphology with an indication of cell lysis. Young modulus of untreated cells was shown to be distinctly bimodal, with randomly distributed softer parts, while treated cells exhibited exponential softening of the stiffer parts in time. Silver nanoparticles and bacteria have shown a masking effect on the raw fluorescence signal through absorbance and scattering. The contribution of cellular ROS in the total fluorescence signal was resolved and it was proven that the ROS level inside the lethally treated cells is not significant. It was found that the laser-synthesized silver nanoparticles mode of antibacterial action includes reduction of the cell's Young modulus in time and subsequently the cell leakage.

20.
Biomolecules ; 10(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098279

RESUMO

Horseradish degradation products, mainly isothiocyanates (ITC) and nitriles, along with their precursors glucosinolates, were characterized by GC-MS and UHPLC-MS/MS, respectively. Volatiles from horseradish leaves and roots were isolated using microwave assisted-distillation (MAD), microwave hydrodiffusion and gravity (MHG) and hydrodistillation (HD). Allyl ITC was predominant in the leaves regardless of the isolation method while MAD, MHG, and HD of the roots resulted in different yields of allyl ITC, 2-phenylethyl ITC, and their nitriles. The antimicrobial potential of roots volatiles and their main compounds was assessed against sixteen emerging food spoilage and opportunistic pathogens. The MHG isolate was the most active, inhibiting bacteria at minimal inhibitory concentrations (MICs) from only 3.75 to 30 µg/mL, and fungi at MIC50 between <0.12 and 0.47 µg/mL. Cytotoxic activity of volatile isolates and their main compounds were tested against two human cancer cell lines using MTT assay after 72 h. The roots volatiles showed best cytotoxic activity (HD; IC50 = 2.62 µg/mL) against human lung A549 and human bladder T24 cancer cell lines (HD; IC50 = 0.57 µg/mL). Generally, 2-phenylethyl ITC, which was tested for its antimicrobial and cytotoxic activities along with two other major components allyl ITC and 3-phenylpropanenitrile, showed the best biological activities.


Assuntos
Armoracia/metabolismo , Glucosinolatos/metabolismo , Glucosinolatos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucosinolatos/isolamento & purificação , Humanos , Isotiocianatos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...